Boundary and interior transition layer phenomena for pairs of second-order differential equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial value problems for second order hybrid fuzzy differential equations

Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia

متن کامل

Principal Pairs for Oscillatory Second Order Linear Differential Equations

Nonoscillatory second order differential equations always admit “special”, principal solutions. For a certain type of oscillatory equation principal pairs of solutions were introduced by Á. Elbert, F. Neuman and J. Vosmanský, Diff. Int. Equations 5 (1992), 945–960. In this paper, the notion of principal pair is extended to a wider class of oscillatory equations. Also an interesting property of ...

متن کامل

Boundary value problem for second-order impulsive functional differential equations

This paper discusses a kind of linear boundary value problem for a nonlinear second order impulsive functional differential equations. We establish several existence results by using the lower and upper solutions and monotone iterative techniques. An example is discussed to illustrate the efficiency of the obtained result. © 2005 Elsevier Inc. All rights reserved.

متن کامل

Second order linear differential equations with generalized trapezoidal intuitionistic Fuzzy boundary value

In this paper the solution of a second order linear differential equations with intuitionistic fuzzy boundary value is described. It is discussed for two different cases: coefficient is positive crisp number and coefficient is negative crisp number. Here fuzzy numbers are taken as generalized trapezoidal intutionistic fuzzy numbers (GTrIFNs). Further a numerical example is illustrated.

متن کامل

Periodic Boundary Value Problems for Second-Order Functional Differential Equations

Upper and lower solution method plays an important role in studying boundary value problems for nonlinear differential equations; see 1 and the references therein. Recently, many authors are devoted to extend its applications to boundary value problems of functional differential equations 2–5 . Suppose α is one upper solution or lower solution of periodic boundary value problems for second-orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1976

ISSN: 0022-247X

DOI: 10.1016/0022-247x(76)90218-3